The correct option is C −3
Given:
Δ=∣∣
∣∣x−22x−33x−42x−33x−44x−53x−55x−810x−17∣∣
∣∣
R2→R2−R1, R3→R3−R2
⇒Δ=∣∣
∣∣x−22x−33x−4x−1x−1x−1x−22(x−2)6(x−2)∣∣
∣∣
⇒Δ=(x−1)(x−2)∣∣
∣∣x−22x−33x−4111126∣∣
∣∣
C2→C2−C1, C3→C3−C1
⇒Δ=(x−1)(x−2)∣∣
∣∣x−2x−12x−2100115∣∣
∣∣
⇒Δ=(x−1)(x−2){(−5(x−1)+(2x−2)}
⇒Δ=(x−1)(x−2)(−3x+3)
⇒Δ=−3(x−1)2 (x−2)
⇒Δ=−3x3+12x2−15x+6
Also, Δ=Ax3+Bx2+Cx+D
comparing the coefficient of same powers
A=−3, B=12, C=−15
⇒B+C=12−15=−3