Let
a,b,c be the sides of the triangle.
Clearly, s=a+b+c2 and so s,s−a,s−b,s−c will be positive.
∵ For positive quantities, A.M.>G.M. [∵s,s−a,s−b,s−c are not all equal ]
∴s+(s−a)+(s−b)+(s−c)4>[s(s−a)(s−b)(s−c)]
⇒4s−(a+b+c)4>(Δ2)14⇒2s4>Δ12[∵a+b+c=2s]
⇒s24>Δ [∵ both s and Δ are positive, squaring will not affect the inequality ]