If
Δ(x)=1cosx1-cosx1+sinxcosx1+sinx-cosxsinxsinx1
then ∫0π4Δ(x)dx=
14
12
0
–14
Finding the value of ∫0π4Δ(x)dx :
Δ(x)=1cosx1-cosx1+sinxcosx1+sinx-cosxsinxsinx1Now,C3→C3+C2-C1Δ(x)=1cosx01+sinxcosx0sinxsinx1R1→R1-R2Δ(x)=-sinx001+sinxcosx0sinxsinx1Δ(x)=-sinx·cosx
∴∫0π4Δ(x)dx=-1∫0π4sinx·cosxdx=-sin2x20π4=-14+0=-14
Hence, the correct answer is option D.
The term independent of x in the expansion of x+1x23-x13+1-x-1x-x1210, x≠1, is equal to
Evaluate :cos48°-sin42°
If 0<x<1, then 1+x2xcos(cot-1x)+sin(cot-1x)2-112=?
Integrate ∫0π4log1+tanxdx.
Integrate ∫-π4π4logsinx+cosxdx.