The correct option is
C a=b=c≠1△r=∣∣
∣∣arbrcrabc1−a1−b1−c∣∣
∣∣
∑∞r=0△r=0
⇒∣∣
∣
∣∣∑∞r=0ar∑∞r=0br∑∞r=0crabc1−a1−b1−c∣∣
∣
∣∣=0
⇒∣∣
∣
∣
∣∣a1−ab1−bc1−cabc1−a1−b1−c∣∣
∣
∣
∣∣=0
by R3→R3+R2
⇒∣∣
∣
∣
∣∣a1−ab1−bc1−cabc111∣∣
∣
∣
∣∣=0
by c3→c3−c1&c2→c2−c1
⇒∣∣
∣
∣
∣∣a1−ab1−bc1−cab−ac−a100∣∣
∣
∣
∣∣=0
⇒(b1−b−a1−a)(c−a)−{c1−c−a1−a}(b−a)=0
⇒{b−ab−a+ab(1−b)(1−a)}(c−a)−{c−ca−a+ca(1−c)(1−a)}(b−a)=0
⇒(b−a)(c−a)(1−b)(1−a)−(c−a)(b−a)(1−c)(1−a)=0
⇒(b−a)(c−a)(1−a){11−b−11−c}=0
⇒(b−a)(c−a)(1−a){1−c−1+b(1−b)(1−c)}=0
⇒(b−a)(c−a)(b−c)(1−a)(1−b)(1−c)=0
so, a=b=c≠1.
Hence, the answer is a=b=c≠1.