If Δr=∣∣ ∣ ∣∣r2r−13r−2n2n−1a12n(n−1)(n−1)212(n−1)(3n−4)∣∣ ∣ ∣∣, then the value of n−1∑r=1Δr :
Find the value of nC0.(n+1)+n.nC1+(n−1)nC2....1.nCn
nC0 + 2.nC1 + 3.nC2 +..............(n+1)nCn =