If Δ(x)=∣∣
∣∣1cosx1−cosx1+sinxcosx1+sinx−cosxsinxsinx1∣∣
∣∣, then ∫π/20Δ(x)dx is equal to
Δ(x)=∣∣ ∣∣1cosx1−cosx1+sinxcosx1+sinx−cosxsinxsinx1∣∣ ∣∣
R2→R2−R1
Δ(x)=∣∣ ∣∣1cosx1−cosxsinx0sinxsinxsinx1∣∣ ∣∣
=1(−sin2x)+cosx(sin2x−sinx)+(1−cosx)sin2x
=−cosx⋅sinx
=−sin2x2
∫π/20Δ(x)dx=−12∫π/20sin1x⋅dx
=14[cos2x]π/20=−1/2