(A)
∫∞0[2ex]dx=∫ln20[2ex]dx+∫∞ln2[2ex]dx=∫ln201dx+0=ln2
(B) ∫1.50[x2]dx=∫10[x2]dx+∫√21[x2]dx+∫1.5√2[x2]dx
⎡⎢⎣∵[x2]=⎧⎪⎨⎪⎩0,0≤x<11,1≤x<√22,√2≤x<1.5⎤⎥⎦
=∫100dx+∫√211.dx+∫1.5√22dx=[(x)]√21+[2(x)]3/2√2
=√2−1+2(32−√2)=2−√2.
(C) Let P=sinx2+cosx
⇒dPdx=(2+cosx).cosx−sinx.(−sinx)(2+cosx)2=2cosx+1(2+cosx)2.
Integrating both sides with respect to x between the limits 0 and π2,
we get [P]π/20=∫π/202cosx+1(2+cosx)2dx
i.e., ∫π/202cosx+1(2+cosx)2dx=[sinx2+cosx]π/20=(12−0)=12.
(D) Let I=∫43[x2][x2−14x+49]+[x2]dx ...(1)
=∫43[x2][(7−x)2]+[x2]dx=∫43[(7−x)2][(7−(7−x))2]+[(7−x)2]dx
[Using ∫baf(x)dx=∫baf(a+b−x)dx]
=∫43[(7−x)2][x2]+[(7−x)2]dx ...(2)
Adding (1) and (2), we get
2I=∫431dx=1.
∴I=12.