wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If [.] denotes the greatest integer function, then match the following columns:

Open in App
Solution

A)
I=22(αx3+βx+γ)dx=22(αx3+βx)dx+22(γ)dx
As αx3+βx is odd function, then 22(αx3+βx)dx=0
I=20γdx=2×2γ=4γ
B)
B=γ2102sinαxsinβxdx=γ210(cos(αβ)xcos(α+β)x)dx=γ2[sin(αβ)xαβsin(α+β)xα+β]10=γ2[sin(αβ)αβsin(α+β)xα+β]
As α,β are roots of tanx=2x
Then, 2α=tanα and 2β=tanβ
Therefore,
2(αβ)=(tanαtanβ)=sin(αβ)cosαcosβ ...(1)
2(α+β)=(tanα+tanβ)=sin(α+β)cosαcosβ ...(2)
Substituting (1) and (2) in B, we get
B=γ210(cosαcosβcosαcosβ)=0
C)
As f(x+α)+f(x)=0f(x+2α)+f(x+α)=0f(x+2α)=f(x)
Hence f(x) is periodic with period 2α
Therefore,
β+2γαβ(αx3+βb+γ)dx=γ2α0f(x)dx
D)
I=2βπ0[sinx]dx+(2β+1)π2βπ[sinx]dx+α(2β+1)π[sinx]dx
=β2π0[sinx]dx+0+α(2β+1)π(1)dx
=βπ+(2β+1)πα=(β+1)πα



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon