If [.] denotes the greatest integer function, then match the following columns:
Open in App
Solution
A)
I=∫2−2(αx3+βx+γ)dx=∫2−2(αx3+βx)dx+∫2−2(γ)dx As αx3+βx is odd function, then ∫2−2(αx3+βx)dx=0 I=∫20γdx=2×2γ=4γ B)
B=γ2∫102sinαxsinβxdx=γ2∫10(cos(α−β)x−cos(α+β)x)dx=γ2[sin(α−β)xα−β−sin(α+β)xα+β]10=γ2[sin(α−β)α−β−sin(α+β)xα+β] As α,β are roots of tanx=2x Then, 2α=tanα and 2β=tanβ Therefore, 2(α−β)=(tanα−tanβ)=sin(α−β)cosαcosβ ...(1) 2(α+β)=(tanα+tanβ)=sin(α+β)cosαcosβ ...(2) Substituting (1) and (2) in B, we get B=γ2∫10(cosαcosβ−cosαcosβ)=0 C)
As f(x+α)+f(x)=0⇒f(x+2α)+f(x+α)=0⇒f(x+2α)=f(x) Hence f(x) is periodic with period 2α Therefore, ∫β+2γαβ(αx3+βb+γ)dx=γ∫2α0f(x)dx D)