The correct option is D 1,2,−12
∣∣
∣∣112249tt21+t3∣∣
∣∣=0
Using row operations,
R3→R3−R1
⇒∣∣
∣∣112249t−1t2−1t3−1∣∣
∣∣=0
⇒(t−1)∣∣
∣
∣∣1122491t+1(t2+t+1)∣∣
∣
∣∣=0
Now,
R2→R2−R1 and R3→R3−R1
⇒(t−1)∣∣
∣
∣∣1120250t(t2+t−1)∣∣
∣
∣∣=0⇒(t−1)(2t2−3t−2)=0⇒(t−1)(t−2)(2t+1)=0⇒t=1,2,−12