Let S=11!10!+12!9!+13!8!+......+110!1!
⇒S×11!=11!1!10!+11!2!9!+11!3!8!+......+11!10!1!
⇒S×11!+2=11!0!11!+11!1!10!+11!2!9!+11!3!8!+......+11!10!1!+11!11!0!
⇒S×11!+2=11C0+11C1+11C2+.......+11C11 --------- where nCr=n!r!(n−r)!
⇒S×11!+2=211 ------ (Using nC0+nC1+nC2+.......+nCn=2n)
⇒S=211!(211−1−1)
Comparing this value of S with the expression in question, we get k=2.