wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 11!10!+12!9!+13!10!+.....+11!10!=2k!(2k11) then find the value of k.

Open in App
Solution

Let S=11!10!+12!9!+13!8!+......+110!1!

S×11!=11!1!10!+11!2!9!+11!3!8!+......+11!10!1!

S×11!+2=11!0!11!+11!1!10!+11!2!9!+11!3!8!+......+11!10!1!+11!11!0!

S×11!+2=11C0+11C1+11C2+.......+11C11 --------- where nCr=n!r!(nr)!

S×11!+2=211 ------ (Using nC0+nC1+nC2+.......+nCn=2n)

S=211!(21111)

Comparing this value of S with the expression in question, we get k=2.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Why Do We Need to Manage Our Resources?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon