The correct option is A p=ϕ
0≤1+4pp≤1
⇒−13≤p≤−14 ⋯(i)
0≤1−p4≤1
⇒−3≤p≤1 ⋯(ii)
0≤1−2p2≤1
⇒−12≤p≤12 ⋯(iii)
As all three mutually exclusive events,
∴0≤1+4pp+1−p4+1−2p2≤1
⇒0≤−5p2+19p+44p≤1
⇒−5p2+19p+4≤0
⇒5p2−19p−4≥0
⇒(5p+1)(p−4)≥0
∴p∈(−∞,−15] ⋯(iv)
−5p2+19p+4≥4p
⇒−5p2+15p+4≥0
⇒5p2−15p−4≤0
⇒p∈[15−√30510,15+√30510] ⋯(v)
∴ From (i),(ii),(iii),(iv) and (v), we get
p=ϕ