The correct options are
A 1a+ω2+1b+ω2+1c+ω2+1d+ω2=2ω2
B abc+bcd+abd+acd=2
C a+b+c+d=2abcd
D 11+a+11+b+11+c+11+d=2
Given 1a+ω+1b+ω+1c+ω+1d+ω=2ω,
Taking conjugate on both the sides,
1a+ω2+1b+ω2+1c+ω2+1d+ω2=2ω2(∵¯¯¯ω=ω2)
So, ω,ω2 are the roots of the equation,
1a+x+1b+x+1c+x+1d+x=2x⋯(1)
⇒x(4x3+3(∑a)x2+2(∑ab)x+∑abc)
=2(x4+(∑a)x3+(∑ab)x2+(∑abc)x+abcd)
⇒2x4+(∑a)x3−(∑abc)x−2abcd=0⋯(2)
Let the other 2 roots be α,β
Here x2 coefficient =0
Thus ∑(Product of roots taken two at a time)=0
⇒ω3+ωα+ωβ+ω2α+ω2β+αβ=0
⇒1−α−β+αβ=0
⇒(1−α)(1−β)=0
⇒α=1 or β=1
So, x=1 will be the root for equation 1.
Replacing x=1 in equation (1), we get
1a+1+1b+1+1c+1+1d+1=2,
Now, if α=1, let the other root be β
From (2),
Product of roots=1⋅ω⋅ω2⋅β=−abcd
⇒β=−abcd [∵ω3=1]
Sum of the roots=−∑a2
⇒1+ω+ω2−abcd=−∑a2
⇒a+b+c+d=2abcd⋯(3)
Replacing x=1 in equation (2), we get
2+∑a−∑abc−2abcd=0
⇒∑abc=2+∑a−2abcd
⇒∑abc=2 [From (3)]