Visualisation of Trigonometric Ratios Using a Unit Circle
If 1/sin1/1∘s...
Question
If 1sin45∘sin46∘+1sin47∘sin48∘+...+1sin135∘sin134∘=1sinA∘ and 1sin1∘sin2∘+1sin2∘sin3∘+...+1sin89∘sin90∘=Bsin1∘, then which of the following is/are correct ?
A
The smallest positive integral value of A is 1.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
The smallest positive integral value of A is 45.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
B=cos1∘
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
B=cot1∘
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A The smallest positive integral value of A is 1. DB=cot1∘ sin1∘=sin[(x+1)∘−x∘] =sin(x+1)∘cosx∘−cos(x+1)∘sinx∘
sin1∘sinA∘=(cot45∘−cot46∘)+(cot47∘−cot48∘) +...+(cot133∘−cot134∘) =cot45∘−(cot46∘+cot134∘)+(cot47∘+cot133∘) −...+(cot89∘+cot91∘)−cot90∘ =1 ⇒sinA∘=sin1∘ So, the least possible integer value for A is 1.