wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If 1sin45sin46+1sin47sin48+...+1sin135sin134=1sinA and
1sin1sin2+1sin2sin3+...+1sin89sin90=Bsin1,
then which of the following is/are correct ?

A
The smallest positive integral value of A is 1.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
The smallest positive integral value of A is 45.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
B=cos1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
B=cot1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A The smallest positive integral value of A is 1.
D B=cot1
sin1=sin[(x+1)x]
=sin(x+1)cosxcos(x+1)sinx

sin1sinxsin(x+1)=cosxsin(x+1)sinxcos(x+1)sinxsin(x+1)

sin1sinxsin(x+1)=cotxcot(x+1)

1sin45sin46+1sin47sin48+...+1sin135sin134=1sinA

Multiplying both sides by sin1, we get

sin1sinA=(cot45cot46)+(cot47cot48)
+...+(cot133cot134)
=cot45(cot46+cot134)+(cot47+cot133)
...+(cot89+cot91)cot90
=1
sinA=sin1
So, the least possible integer value for A is 1.


1sin1sin2+1sin2sin3+...+1sin89sin90=Bsin1

LHS=89k=11sinksin(k+1)
=1sin189k=1[cotkcot(k+1)]
=cot1sin1

B=cot1

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Visualisation of Trigonometric Ratios Using a Unit Circle_Tackle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon