Tangent, Cotangent, Secant, Cosecant in Terms of Sine and Cosine
If 1+sin2x1-s...
Question
If 1+sin2x1−sin2x=cot2(a+x)∀x∈R−(nπ+π4),n∈N then the possible value of a is
A
π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3π4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
3π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C3π4 1+sin2x1−sin2x=(sinx+cosx)2(sinx−cosx)2 =(1+tanx1−tanx)2=(tan(π4+x))2=cot2(π2+π4+x)(∵cot(π2+x)=−tanx)=cot2(3π4+x)⇒cot2(a+x)=cot2(3π4+x)∴a=3π4