1(x−3)+2(x−2)=8x
x−2+2(x−3)((x−3)(x−2))+2(x−2)=8x
⇒(3x−8)(x−3)(x−2)=8x [ 1 Mark]
On cross multiplying we get,
⇒x(3x−8)=8(x−3)(x−2)
⇒3x2−8x=8(x2−5x+6)
⇒8x2−40x+48−(3x2−8x)=0
⇒5x2−32x+48=0
⇒5x2−20x−12x+48=0
⇒5x(x−4)−12(x−4)=0
⇒(x−4)(5x−12)=0
Now, either x−4=0⇒x=4
Or, 5x−12=0⇒x=125 [ 1 mark]
Thus, the roots of the given quadratic equation are 125 and 4 respectively [ 1 mark]