We have,
1x+y,12y,1y+z are the A.P.
We know that,
In terms of an A.P.
T2−T1=T3−T2
⇒12y−1x+y=1y+z−12y
⇒x+y−2y2y(x+y)=2y−y−z2y(y+z)
⇒x−y2y(x+y)=y−z2y(y+z)
⇒(x−y)(x+y)=(y−z)(y+z)
⇒(x−y)(y+z)=(x+y)(y−z)
⇒xy−y2+xz−yz=xy+y2−xz−yz
⇒xz−yz+xz+yz=2y2
⇒2xz=2y2
⇒y2=xz
Hence, x,y,z in
G.P.