If 15a2+4b215a2−4b2=477 then find the values of the following ratios.
Consider given the equation,
15a2+4b215a2−4b2=477
Apply the componendo-dividendo rule
15a2+4b2+15a2−4b2(15a2+4b2)−(15a2−4b2)=47+747−7
30a28b2=5440
15a24b2=2720
a2b2=27×420×15=975
ab=35√3