If 2sinα1+sinα+cosα=λ, then what will be the value of 1+sinα−cosα1+sinα
Consider the given equation.
2sinα1+sinα+cosα=λ ……. (1)
2sinα1+sinα+cosα×(1+sinα−cosα)1+sinα−cosα=λ
2sinα(1+sinα−cosα)(1+sinα)2−cos2α=λ
2sinα+2sin2α−2sinαcosα1+sin2α+2sinα−cos2α=λ
2sinα+2sin2α−2sinαcosαsin2α+2sinα+1−cos2α=λ
2sinα+2sin2α−2sinαcosαsin2α+2sinα+sin2α=λ[∵sin2x=1−cos2x]
2sinα+2sin2α−2sinαcosα2sin2α+2sinα=λ
1+sinα−cosα1+sinα=λ
Hence, this is the answer.