The correct option is B b=5
Let S=35+515+745+9135+…
⇒S=15[31+53+79+927+…∞]
Since, 31+53+79+927+…∞ is AGP with a=3, d=2, r=13
∴S=15⎡⎢
⎢
⎢
⎢
⎢⎣31−13+2×13(1−13)2⎤⎥
⎥
⎥
⎥
⎥⎦
=15[92+32]
⇒S=65
Alternate Solution:
Let S=35+515+745+9135+…
13S=35⋅3+55⋅32+75⋅33+…
Now,
S−13S=35+25⋅3+25⋅32+25⋅33+…
⇒23S=35+25⋅3(1+13+132+…)
⇒23S=35+25⋅3×11−13
⇒23S=35+25⋅3×32
⇒23S=35+15=45
⇒S=65