The correct option is A π−tan−1(43)
Let z=3+isinθ4−icosθ×4+icosθ4+icosθ
=12−sinθcosθ+i(4sinθ+3cosθ)16+cos2θ
Given, z is real
∴4sinθ+3cosθ=0
⇒tanθ=−34
⇒θ lies in 2nd quadrant
or, θ lies in 4th quadrant.
∴arg(sinθ+icosθ)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩π+tan−1(cosθsinθ), θ∈(π2,π)2π+tan−1(cosθsinθ), θ∈(3π2,2π)
⇒arg(sinθ+icosθ)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩π−tan−1(43), θ∈(π2,π)2π−tan−1(43), θ∈(3π2,2π)