The correct option is D −α, where tanα=43
Let Z=3+isinθ4−icosθ
Now,
Z=3+isinθ4−icosθ×4+icosθ4+icosθ⇒Z=12−sinθcosθ+i(4sinθ+3cosθ)16+cos2θ
Given, Z is real
∴4sinθ+3cosθ=0⇒tanθ=−34
Case-1: If θ lies in 2nd quadrant
z=sinθ+icosθ
Re(z)>0 & Im(z)<0
So, z lies in 4th quadrant
tanα=|cosθ||sinθ|=−cotθ=43
∴arg(z)=−α, where tanα=43
Case-2: If θ lies in 4th quadrant
z=sinθ+icosθ
Re(z)<0 & Im(z)>0
So, z lies in 2nd quadrant
tanα=|cosθ||sinθ|=cosθ−sinθ=−cotθ=43
∴arg(z)=π−α, where tanα=43