An=5+11+19+29+41+⋯+tnAn= 5+11+19+29+41+⋯+tn−1+tn
On subtracting, we get
0=5+6+8+10+12+⋯−tn
tn=5+[6+8+10+12+⋯(n−1) terms]
=5+(n−12)[6×2+(n−2)×2]
tn=n2+3n+1
Therefore, nth term of the given series is,
Tn=n2+3n+1n!
=n2n(n−1)!+3nn(n−1)!+1n!
=1(n−2)!+1(n−1)!+3(n−1)!+1n!
=1(n−2)!+4(n−1)!+1n!
Now, Sn=∑Tn
Sn=∞∑n=21(n−2)!+4∞∑n=11(n−1)!+∞∑n=11n!
∵ex=1+x1!+x22!+x33!+⋯
∴Sn=e+4e+e−1=6e−1
⇒a=6,b=1,c=−1∴a+b+c=6