If 5x+3=1x+12x, calculate the value of x.
Expand: (1)(a+2)(a−1)(2) (m−4)(m+6)(3) (p+8)(p−3)(4) (13+x)(13−x)(5) (3x+4y)(3x+5y)(6) (9x−5t)(9x+3t)(7) (m+23)(m−73)(8) (x+1x)(x−1x)(9) (1y+4)(1y−9)
Solve :
(i) 13x−6=52(ii) 2x3−3x8=712(iii) (x+2)(x+3)+(x−3)(x−2)−2x(x+1)=0(iv) 110−7x=35(v) 13(x−4)−3(x−9)−4(x+4)=0(vi) x+7−8x3=17x6−5x8(vii) 3x−24−2x+33=23−x(viii) x+26−(11−x3−14)=3x−412(ix) 25x−53x=115(x) x+23−x+15=x−34−1(xi) 3x−23+2x+32=x+76(xii) x−x−12=1−x−23(xiii) 9x+72−(x−x−27)=36(xiv) 6x+12+1=7x−33