9b×32×(3−b22)−27b33a×23=127⇒32b×32×(3b)−33b33a×23=127⇒33b×32−33b33a×23=133⇒33b(9−1)33a×8=133
⇒33b33a=133
Taking log3 both sides,
⇒log3(33b33a)=log3(3−3)
⇒log333b−log333a=log3(3−3)
⇒3b−3a=−3
⇒a−b=1