The correct option is A [−23,−1√5)∪(1√5,52]
Given 9x2−4√5x2−1≤3x+2 to be valid
5x2−1>0
⇒x2>15⇒(x−1/√5)(x+1/√5)>0
∴x∈(−∞,−1√5)∪(1√5,∞)⋯(1)
Now,
9x2−4√5x2−1−(3x+2)≤0
∵√5x2−1>0
⇒[(3x)2−22]−(3x+2)√5x2−1≤0
⇒(3x+2)(3x−2−√5x2−1)≤0
Case 1: When x<23
3x+2≥0,3x−2≤√5x2−1⇒x≥−23,3x−2≤0 [∵√5x2−1≥0]∴x∈[−23,23)⋯(2)
Case 2: When x≥23
3x+2≥0,3x−2≤√5x2−1⇒x≥−23,(3x−2)2≤5x2−1 [∵both sides are +ive]⇒x≥−23,4x2−12x+5≤0⇒x≥−23,(2x−5)(2x−1)≤0⇒x≥−23,x∈[12,52]∴x∈[23,52]⋯(3)
From (1),(2) and (3)
x∈[−23,−1√5)∪(1√5,52]