If a|z1−z2|=b|z2−z3|=c|z3−z1|where(a,b,c∈R), then value of a2z1−z2+b2z2−z3+c2z3−z1 is
A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A0 Givena|z1−z2|=b|z2−z3|=c|z3−z1| Let a|z1−z2|=b|z2−z3|=c|z3−z1|=λ′ On squaring both sides, we get a2|z1−z2|2=b|z2−z3|2=c2|z3−z1|2=λ′2=λ⋯(i) We know |z1−z2|2=(z1−z2)(¯¯¯z1−¯¯¯z2) ∴a2=λ(z1−z2)(¯¯¯z1−¯¯¯z2)⋯(ii) b2=λ(z2−z3)(¯¯¯z2−¯¯¯z3)⋯(iii) c2=λ(z3−z1)(¯¯¯z3−¯¯¯z1)⋯(iv) for λ∈R. By putting this values of a2,b2,c2 in a2z1−z2+b2z2−z3+c2z3−z1, we get ∑a2z1−z2=0