We have: axsinθcos2θ−bycosθsin2θ=0
⇒axsin3θ−bycos3θ=0
⇒sin3θby=cos3θax
⇒(sin3θby)2/3=(cos3θax)2/3
⇒sin2θ(by)2/3=cos2θ(ax)2/3
⇒sin2θ(by)2/3−cos2θ(ax)2/3−sin2θ+cos2θ(by)2/3+(ax)2/3
⇒sin2θ(by)2/3=cos2θ(ax)2/3=1(ax)2/3+(by)2/3
⇒sin2θ=(by)2/3(ax)2/3+(by)2/3
cos2θ=(ax)2/3(ax)2/3+(by)2/3
⇒sinθ=(by)1/3√(ax)2/3+(by)2/3 and cosθ=(ax)1/3√(ax)2/3+(by)2/3
Substituting these value in
axcosθ+bysinθ=a2−b2, we get
(ax)2/3√(ax)2/3+(by)2/3+(by)2/3√(ax)2/3+(by)2/3=a2−b2
⇒[√(ax)2/3+(by)2/3][(ax)2/3+(by)2/3]=a2−b2
⇒[(ax)2/3+(by)2/3]3/2=a2−b2
⇒(ax)2/3+(by)2/3=(a2−b2)2/3