wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If axcosθ+bysinθ=a2b2 ,and axsinθcos2θbycosθsin2θ=0,

prove that (ax)2/3+(by)2/3=(a2b2)2/3

Open in App
Solution

We have: axsinθcos2θbycosθsin2θ=0

axsin3θbycos3θ=0

sin3θby=cos3θax

(sin3θby)2/3=(cos3θax)2/3

sin2θ(by)2/3=cos2θ(ax)2/3

sin2θ(by)2/3cos2θ(ax)2/3sin2θ+cos2θ(by)2/3+(ax)2/3

sin2θ(by)2/3=cos2θ(ax)2/3=1(ax)2/3+(by)2/3

sin2θ=(by)2/3(ax)2/3+(by)2/3

cos2θ=(ax)2/3(ax)2/3+(by)2/3

sinθ=(by)1/3(ax)2/3+(by)2/3 and cosθ=(ax)1/3(ax)2/3+(by)2/3

Substituting these value in

axcosθ+bysinθ=a2b2, we get
(ax)2/3(ax)2/3+(by)2/3+(by)2/3(ax)2/3+(by)2/3=a2b2

[(ax)2/3+(by)2/3][(ax)2/3+(by)2/3]=a2b2
[(ax)2/3+(by)2/3]3/2=a2b2
(ax)2/3+(by)2/3=(a2b2)2/3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon