From the second relation, we get
sin2θsinθcos2θcosθ=byax
∴sinθ=(by)1/3[(ax)2/3+(by)2/3]1/2
cosθ=(ax)1/3[(ax)2/3+(by)2/3]1/2
Putting for sinθ and cosθ
axcosθ+bysinθ=a2−b2, we get
[(ax)2/3+(by)2/3]1/2[ax/(ax)1/3+by/(by)1/3]=a2−b2
or [(ax)2/3+(by)2/3]1/2[(ax)2/3+(by)2/3]=a2−b2
or [(ax)2/3+(by)2/3]3/2=a2−b2
or (ax)2/3+(by)2/3=(a2−b2)2/3