wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If axcosθ+bysinθ=(a2b2), and
axsinθcos2θ+bycosθsin2θ=0, show that
(ax)2/3+(by)2/3=(a2b2)2/3.

Open in App
Solution

From the second relation, we get
sin2θsinθcos2θcosθ=byax
sinθ=(by)1/3[(ax)2/3+(by)2/3]1/2
cosθ=(ax)1/3[(ax)2/3+(by)2/3]1/2
Putting for sinθ and cosθ
axcosθ+bysinθ=a2b2, we get
[(ax)2/3+(by)2/3]1/2[ax/(ax)1/3+by/(by)1/3]=a2b2
or [(ax)2/3+(by)2/3]1/2[(ax)2/3+(by)2/3]=a2b2
or [(ax)2/3+(by)2/3]3/2=a2b2
or (ax)2/3+(by)2/3=(a2b2)2/3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon