wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If b+c11=c+a12=a+b13, prove that cosA7=cosB19=cosC25

Open in App
Solution

b+c11=c+a12=a+b13=b+c+a+b+c+a11+12+13
=2(a+b+c)36
=a+b+c18
b+c11=a7,c+a12=b6,a+b13=c5 then
Let a7=b6=c5=k
cosA=k2(62+5272)k2×2×6×5=36+254960=1260=15=735
cosB=k2(52+7262)k2×2×5×7=25+493670=3870=1935
cosC=k2(62+7252)k2×2×6×7=36+492584=6084=2535
cosA7=cosB19=cosC25
7357=193519=253525=135=k
Hence cosA7=cosB19=cosC25 is proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon