Let by+czb2+c2=cz+axc2+a2=ax+bya2+b2=k …………(1)
by+cz=k(b2+c2), cz+ax=k(c2+a2),
ax+by=k(a2+b2)
Adding these we get 2(ax+by+cz)=2k(a2+b2+c2)
⇒ax+by+cz=k(a2+b2+c2)
⇒ax=k(a2+b2+c2)−(by+cz)
=k(a2+b2+c2)−k(b2+c2) from above
=k(a2+b2+c2−b2−c2)=ka2
∴x=ka
Again by=k(a2+b2+c2)−(ax+cz)
by=k(a2+b2+c2)−k(c2+a2) from above
⇒by=k(a2+b2+c2−a2−c2)=kb2
⇒y=kb
Similarly, cz=k(a2+b2+c2)−(ax+by)
⇒cz=k(a2+b2+c2)−k(a2+b2) from above
⇒cz=k(a2+b2+c2−a2−b2)=kc2
∴z=kc
∴xa=k,yb=k and zc=k
Hence xa=yb=zc=k (or)
xa=yb=zc hence proved.