wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If by+czb2+c2=cz+axc2+a2=ax+bya2+b2 then prove that xa=yb=zc

Open in App
Solution

Let by+czb2+c2=cz+axc2+a2=ax+bya2+b2=k …………(1)

by+cz=k(b2+c2), cz+ax=k(c2+a2),

ax+by=k(a2+b2)

Adding these we get 2(ax+by+cz)=2k(a2+b2+c2)

ax+by+cz=k(a2+b2+c2)

ax=k(a2+b2+c2)(by+cz)

=k(a2+b2+c2)k(b2+c2) from above

=k(a2+b2+c2b2c2)=ka2

x=ka

Again by=k(a2+b2+c2)(ax+cz)

by=k(a2+b2+c2)k(c2+a2) from above

by=k(a2+b2+c2a2c2)=kb2

y=kb

Similarly, cz=k(a2+b2+c2)(ax+by)

cz=k(a2+b2+c2)k(a2+b2) from above

cz=k(a2+b2+c2a2b2)=kc2

z=kc

xa=k,yb=k and zc=k

Hence xa=yb=zc=k (or)

xa=yb=zc hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Identity (a - b)^3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon