The correct option is D cos4Bcos2A+sin4Bsin2A=1
cos4Acos2B+sin4Asin2B=1⇒cos4Asin2B+sin4Acos2B=cos2Bsin2B
⇒(1−sin2A)2sin2B+sin4A(1−sin2B)=(1−sin2B)sin2B⇒(1−2sin2A+sin4A)sin2B+(sin4A(1−sin2B))=(1−sin2B)sin2B⇒sin4B−2sin2Asin2B+sin4A=0⇒(sin2B−sin2A)2=0⇒sin2A=sin2B⇒cos2A=cos2B
Now, from the given options,
sin4A+sin4B=sin4B+sin4B=2sin4B=2sin2Asin2B
cos4Bcos2A+sin4Bsin2A=cos4Bcos2B+sin4Bsin2B=cos2B+sin2B=1
Alternate method:
We know that,
sin2θ+cos2θ=1
Given equation:
cos4Acos2B+sin4Asin2B=1
This will be an identity when,
A=B=θ
Now, from the given options,
Clearly, cos4Bcos2A+sin4Bsin2A=1 and sin4A+sin4B=2sin2Asin2B hold true.