A careful look at the question suggests that we have to prove x = y. We know that
2cos2θ=1+cos2θ,
and 2sin2θ=1−cos2θ,
Hence changing to double angles in the give relation
cos4xcos2y+sin4xsin2y=1 we get
14(1+cos2x)212(1−cos2y)+14(1−cos2x)2⋅12(1+cos2y)
12(1+cos2y)⋅12(1−cos2y)
=2(1−cos22y)
or {(1+cos2x)2+(1−cos2x)2}−cos2y{(1+cos2x)2−(1−cos2x)2}
=2(1−cos22y)
or 2(1+cos22x)−cos2y(4cos2x)=2−2cos22y
or cos22x+cos22y−2cos2xcos2y=0
or (cos2x+cos2y)2=0
∴cos2x=cos2yory=nπ±x
∴cos4ycos2x+sin4ysin2x=cos2x+sin2x=1
(on putting y = x) .