If cosA+2cosCcosA+2cosB=sinBsinC the the triangle ABC is either isosceles or right angled.
Open in App
Solution
cosA(sinB−sinC)+(sin2B−sin2C)=0 or cosA(sinB−sinC)+2sin(B−C)cos(B+C)=0 or cosA(sinB−sinC)−2cosAsin(B−C)=0 ∴ either cosA=0⇒A=90o or (sinB−sinC)−2(sinBcosC−cosBsinC)=0 or a(b−c)−2(b2−c2)=0 ⇒(b−c)−[a−2(b+c)]=0 ∴b−c=0b=c∴ Isosceles.