wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosαcosβ+sinαsinβ=1, then the value of cos3βcosα+sin3βsinα is

Open in App
Solution

cosαcosβ+sinαsinβ=1

Let cosαcosβ=a, then
sinαsinβ=(1+a)

Now,
cos3βcosα+sin3βsinα=cos2βasin2β(1+a)=cos2βa1cos2β(1+a)=cos2β[1a+11+a]11+a=cos2β[1+2aa(1+a)]11+a(1)

We know that,
cos2α+sin2α=1a2cos2β+(1+a)2sin2β=1a2cos2β+(1+a2+2a)(1cos2β)=1(1+2a)cos2β=1(1+a2+2a)cos2β=a2+2a1+2acos2β(1+2a)=a2+2acos2β(1+2a)a(a+1)11+a=a+2a+111+acos2β(1+2a)a(a+1)11+a=1

From equation (1), we get
cos3βcosα+sin3βsinα=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon