cosαcosβ+sinαsinβ=−1
Let cosαcosβ=a, then
sinαsinβ=−(1+a)
Now,
cos3βcosα+sin3βsinα=cos2βa−sin2β(1+a)=cos2βa−1−cos2β(1+a)=cos2β[1a+11+a]−11+a=cos2β[1+2aa(1+a)]−11+a⋯(1)
We know that,
cos2α+sin2α=1⇒a2cos2β+(1+a)2sin2β=1⇒a2cos2β+(1+a2+2a)(1−cos2β)=1⇒−(1+2a)cos2β=1−(1+a2+2a)⇒cos2β=a2+2a1+2a⇒cos2β(1+2a)=a2+2a⇒cos2β(1+2a)a(a+1)−11+a=a+2a+1−11+a⇒cos2β(1+2a)a(a+1)−11+a=1
From equation (1), we get
cos3βcosα+sin3βsinα=1