Given that,
cosxcosy=ab ……. (1)
Then, prove that,
atanx+btany=(a+b)tanx+y2
Or
atanx+btany(a+b)=tanx+y2
Proof:- By equation (1)
bcosx=acosy
ba=cosycosx
(ba+1)=(cosycosx+1)
a+ba=cosx+cosycosx
aa+b=cosxcosx+cosy …… (2)
Similarly,
ba+b=cosycosx+cosy …… (3)
L.H.S.
atanx+btany(a+b)
=aa+btanx+ba+btany
Put the value by equation (2) and (3) and we get,
=cosxcosx+cosytanx+cosycosx+cosytany
=cosxtanx+cosytanycosx+cosy
=cosxsinxcosx+cosysinycosycosx+cosy
=sinx+sinycosx+cosy
=2sin(x+y2)cos(x−y2)2cos(x+y2)cos(x−y2)
=tan(x+y2)
R.H.S.
Hence proved.