The correct option is A x4+1x3−1298
Given,ddxf(x)=4x3−3x4
The anti derivative of (4x3−3x4)=f(x)
Hence,
f(x)=∫(4x3−3x4)dx
By taking terms separately, we get
f(x)=4∫x3dx−3∫(x−4)dx =4(x44)−3(x−3−3)+C =x4+1x3+C
Also, f(2)=0
By substituting x=2, we get
f(2)=(2)4+1(2)3+C=0
⇒16+18+C=0
C=−(16+18)=(−1298)
Hence, f(x)=x4+1x3−1298