The correct option is
D x2−y2−2xy=cdydx=x−yx+y.
Let y=vx since the above function x−yx+y is homogeneous function.
Therefore, dydx=v+xdvdx.
Hence
dydx=x−yx+y.
→v+xdvdx=x−vxx+vx.
→v+xdvdx=1−v1+v.
xdvdx=1−v1+v−v
xdvdx=1−v−v−v2(1+v)
xdvdx=1−2v−v21+v
−xdvdx=v2+2v−11+v
−xdvdx=(v+1)2−21+v
1+v(v+1)2−2dv=−dxx
∫1+v(v+1)2−2dv=−lnx+lnC
Consider
∫1+v(v+1)2−2dv=I
Then let (v+1)2−2=t
2(v+1)dv=dt
Hence
∫1+v(v+1)2−2dv
=∫dt2t
=12lnt
=ln(√t)
=ln(√(v+1)2−2)
=ln(√(x2+y2+2xy−2x2)−lnx
=ln(√(y2+2xy−x2)−lnx
Hence, the integral becomes
ln(√(y2+2xy−x2)−lnx=−lnx+lnC
or
ln(√(y2+2xy−x2)=lnc
√(y2+2xy−x2=C
y2+2xy−x2=C
Or
x2−y2−2xy= Constant