The correct option is A y2=e2x−2e2xlny
From given equation,
dxdy=e2x+y2y3
⇒dxdy=1y+e2x⋅1y3
⇒dxdy−1y=e2x⋅1y3
⇒e−2x⋅dxdy−1y⋅e−2x=1y3
Put e−2x=t
⇒−2e−2xdxdy=dtdy
⇒e−2xdxdy=−12dtdy
∴−12dtdy−1y×t=1y3
⇒dtdy+(2y)t=−2y3 ...(i)
I.F. =e2∫dyy=e2lny=y2
∴ Solution of equation (i) is
t×y2=−2∫1y3×y2dy
⇒e−2x×y2=−2lny+C
When x=0, y(0)=1
∴e0×1=−2ln1+C
⇒C=1
∴e−2x⋅y2=−2lny+1
⇒y2=−2e2xlny+e2x