The correct options are
A y(0)=1
C Area bounded by the curve y=f(x), x=0,x=1 and x-axis lies in (1,2)
I.F. =e−∫loge2 dx=e−xln2=2−x
∴ Solution is y⋅2−x=∫2sinx−x(cosx−1)ln2 dx
Let sinx−x=t⇒(cosx−1)dx=dt
Then, y⋅2−x=∫2tln2 dt
∴y⋅2−x=2sinx−x+c⇒y=2sinx+c⋅2x
Since y(π2)=2, ∴c=0
∴y=2sinx
⇒y(0)=1
As 0<x<1
⇒0<sinx<1
⇒1<2sinx<2
⇒1<1∫02sinx<2
∴ Area bounded ∈(1,2)