The correct option is D xyz=xaybzc
Let lnxb−c=lnyc−a=lnza−b=k (say)
⇒lnx=k(b−c), lny=k(c−b), lnz=k(a−b)
∴lnx+lny+lnz=k(b−c)+k(c−b)+k(a−b)=0
⇒lnxyz=0
⇒xyz=1
Also, x=ek(b−c), y=ek(c−a), z=ek(a−b)
∴xaybzc=eka(b−c)⋅ekb(c−a)⋅ekc(a−b)=e0=1
Similarly, xb+c yc+a za+b=ek(b2−c2)⋅ek(c2−a2)⋅ek(a2−b2)=e0=1