The correct option is C 1√2
(log2x)22−log2x1/4=logx√2+54⇒(log2x)22−14log2x−54=12logx2⇒(log2x)22−14log2x−54=12(log2x)
Assuming log2x=t, we get
t22−t4−54=12t⇒2t3−t2−5t−2=0⇒(t+1)(2t2−3t−2)⇒(t+1)(t−2)(2t+1)=0⇒t=−1,2,−12⇒log2x=−1,2,−12⇒x=2−1,22,2−12∴x=12,4,1√2