If π2<x<3π2, then √1−sinx1+sinx is equal to
Rationalizing the denominator of √1−sinx1+sinx.
√1−sinx1+sinx=√(1−sinx)(1−sinx)(1+sinx)(1−sinx)
=√(1−sinx)21−sin2x
=√(1−sinx)2cos2x
=1−sinxcosx
=1cosx−sinxcosx
=secx−tanx