Given: Chord passing through the focus (ae,0) and eccentric angles of the extremeties of the chord are π4 and π3.
To Find: Eccentricity of the ellipse
Step-1: Consider the equation of the focal chord
Step-2: Use the coordinates of the foci to find the value of eccentricity.
If α and β are the extremeties of the focal chord d=ae, then tanα2tanβ2=e−1e+1
e=sinα+sinβsin(α+β)
⇒e=sin(π4)+sin(π3)sin(π4+π3)
⇒e=sin(π4)+sin(π3)sin(7π12)
⇒e=1√2+√32√2+√64
⇒e=2(√2+√3)(√2+√6)
⇒e=√2(√2+√3)(1+√3)