wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x=exy , prove that
dydx=xyxlogx


Open in App
Solution

Differentiate the above expression w.r.t. x
Given: x=exy
Now lets prove dydx=xyxlogx
Differentiating both sides w.r.t. x
dxdx=ddxexy
1=exy[ddx(xy)]
1=exy⎢ ⎢ ⎢y.1x.dydxy2⎥ ⎥ ⎥
⎢ ⎢ ⎢ddx(uv)=vdudxudvdxv2⎥ ⎥ ⎥
y2=y.exyx.dydx.exy
dydx=yexyyx.exy=exyyxy.exy
dydx=xyxlogx[x=exylogx=xy]
Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon