Differentiate the above expression w.r.t. x
Given: x=exy
Now lets prove dydx=x−yxlogx
Differentiating both sides w.r.t. x
⇒dxdx=ddx⎛⎜⎝exy⎞⎟⎠
⇒1=exy[ddx(xy)]
⇒1=exy⎡⎢
⎢
⎢⎣y.1−x.dydxy2⎤⎥
⎥
⎥⎦
⎡⎢
⎢
⎢⎣∵ddx(uv)=vdudx−udvdxv2⎤⎥
⎥
⎥⎦
⇒y2=y.exy−x.dydx.exy
⇒dydx=y⎛⎜⎝exy−y⎞⎟⎠x.exy=exy−yxy.exy
⇒dydx=x−yxlogx[∵x=exy⇒logx=xy]
Hence proved