If sin22x+4sin4x−4sin2xcos2x4−sin22x−4sin2x=19 and 0<x<π, then the value of x is
Given, sin22x+4sin4x−4sin2xcos2x4−sin22x−4sin2x=19
⇒(2sinxcosx)2+4sin4x−4sin2xcos2x4−(2sinxcosx)2−4sin2x=19⇒4sin2xcos2x+4sin4x−4sin2xcos2x4−4sin2xcos2x−4sin2x=19⇒sin4x1−sin2x−sin2xcos2x=19⇒sin4xcos2x−sin2xcos2x=19⇒sin4xcos2x(1−sin2x)=19⇒sin4xcos4x=19⇒tan4x=19⇒tanx=±1√3⇒x=π6,π−π6⇒x=π6,5π6
So, options A and C are correct.