We have,
sin3θ+cos3θsinθ+cosθ+sin3θ−cos3θsinθ−cosθ=K
(sinθ+cosθ)(sin2θ+cos2θ−sinθcosθ)(sinθ+cosθ)+(sinθ−cosθ)(sin2θ+cos2θ+sinθcosθ)(sinθ−cosθ)=K
(sin2θ+cos2θ−sinθcosθ)+(sin2θ+cos2θ+sinθcosθ)=K
1−sinθcosθ+1+sinθcosθ=K
K=2
Hence, this is the answer.