wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If
sin4 Aa+cos4 Ab=1a+b, then the value of sin8 Aa3+cos8 Ab3
is equal to


Open in App
Solution

It is given that
sin4 Aa+cos4 Ab=1a+b

(1cos 2 A)24a+(1+cos 2 A)24b=1a+bb(a+b)(12 cos 2A+cos2 2A)+a(a+b)(1+2 cos 2A+cos2 2A)=4ab{b(a+b)+a(a+b)}cos2 2A+2(a+b)(ab)cos 2A +a(a+b)+b(a+b)4ab=0(a+b)2 cos2 2A+2(a+b)(ab)cos 2A+(ab)2=0{(a+b)cos 2A+(ab)}2=0 cos 2A=bab+a


Hence, sin8 Aa3+cos8 Ab3(1cos 2A)416 a3+(1+cos 2A)416 b3116a3[1bab+a]4+116b3[1+bab+a]4
16a416a3(b+a)4+16b416b3(b+a)41(b+a)4(a+b)1(a+b)3

Trick:Put A=90, then

sin8 Aa3+cos8 Ab3=1a3
which is given by option (a)
Note : Students can check this question for other values of A also.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Multiple Angles: sin2θ ; cos2θ ; tan2θ
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon