sin4θa+cos4θb=1a+b→(i)provethat(i)sin8θa3+cos8θb3=1(a+b)3So,multiply(a+b)byequation(i),weget(a+b)sin4θa+(a+b)cos4θb=1(1+ba)sin4θ+(ab+1)cos4θ=1⇒basin4θ+abcos4θ=(sin2θ+cos2θ)2−(sin4θ+cos4θ)[∵1=cos2θ+sin2θ]⇒basin4θ+abcos4θ=2sin2θ.cos2θ⇒(√basin2θ)2+(√abcos2θ)2−2×√ba×√absin2θ.cos2θ=0(√basin2θ−√abcos2θ)=0⇒√basin2θ=√abcos2θ⇒basin4θ=abcos4θ⇒b2a2sin4θ=cos4θ⇒sin2θa=cos2θbsin2θa=cos2θb=sin2θ+cos2θa+b⇒1a+bSo,sin8θa3+cos8θb3⇒sin2θ.sin6θa3+cos2θ.cos6θb3⇒sin2θ(sin2θa)3+cos2θ.(cos2θb)3⇒sin2θ(1a+b)3+cos2θ(1a+b)3⇒1(a+b)3[sin2θ+cos2θ]sin8aa3+cos8θa3⇒1(a+b)3