wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin4θa+cos4θb=1a+b, prove that
i) sin8θa3+cos8θb3=1(a+b)3
ii) sin4nθa2n1+cos4nθb2n1=1(a+b)2n1, nN

Open in App
Solution

sin4θa+cos4θb=1a+b(i)provethat(i)sin8θa3+cos8θb3=1(a+b)3So,multiply(a+b)byequation(i),weget(a+b)sin4θa+(a+b)cos4θb=1(1+ba)sin4θ+(ab+1)cos4θ=1basin4θ+abcos4θ=(sin2θ+cos2θ)2(sin4θ+cos4θ)[1=cos2θ+sin2θ]basin4θ+abcos4θ=2sin2θ.cos2θ(basin2θ)2+(abcos2θ)22×ba×absin2θ.cos2θ=0(basin2θabcos2θ)=0basin2θ=abcos2θbasin4θ=abcos4θb2a2sin4θ=cos4θsin2θa=cos2θbsin2θa=cos2θb=sin2θ+cos2θa+b1a+bSo,sin8θa3+cos8θb3sin2θ.sin6θa3+cos2θ.cos6θb3sin2θ(sin2θa)3+cos2θ.(cos2θb)3sin2θ(1a+b)3+cos2θ(1a+b)31(a+b)3[sin2θ+cos2θ]sin8aa3+cos8θa31(a+b)3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon