wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin4θa+cos4θb=1(a+b) then prove that sin8θa3+cos8θb3=2(a+b)3.

Open in App
Solution

sin4θa+cos4θb=1a+b
bsin4θ+acos4θ=aba+b
bsin2θ(1cos2θ)+acos4θ=aba+b
bsin2θbsin2θcos2θ+acos4θ=aba+b
b(1cos2θ)b(1cos2θ)cos2θ+acos4θ=aba+b
bbcos2θbcos2θ+bcos4θ+acos4θ=aba+b
(a+b)cos4θ2bcos2θ+baba+b=0
(a+b)cos4θ2bcos2θ+ab+b2aba+b=0
(a+b)cos4θ2bcos2θ+b2a+b=0
(a+b)2cos4θ2b(a+b)cos2θ+b2=0
Discriminant=(2b(a+b))24×(a+b)2b2=0
roots are equal Hence cos2θ=ba+b
sin8θ=(1cos2θ)3=(1ba+b)3=a3(a+b)3
cos8θ=(ba+b)3=b3(a+b)3
sin8θa3+sin8θa3
=a3a3(a+b)3+b3b3(a+b)3
=2(a+b)3
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon