sin4θa+cos4θb=1a+b
bsin4θ+acos4θ=aba+b
bsin2θ(1−cos2θ)+acos4θ=aba+b
bsin2θ−bsin2θcos2θ+acos4θ=aba+b
b(1−cos2θ)−b(1−cos2θ)cos2θ+acos4θ=aba+b
b−bcos2θ−bcos2θ+bcos4θ+acos4θ=aba+b
(a+b)cos4θ−2bcos2θ+b−aba+b=0
(a+b)cos4θ−2bcos2θ+ab+b2−aba+b=0
(a+b)cos4θ−2bcos2θ+b2a+b=0
(a+b)2cos4θ−2b(a+b)cos2θ+b2=0
Discriminant=(2b(a+b))2−4×(a+b)2b2=0
∴ roots are equal Hence cos2θ=ba+b
sin8θ=(1−cos2θ)3=(1−ba+b)3=a3(a+b)3
cos8θ=(ba+b)3=b3(a+b)3
∴sin8θa3+sin8θa3
=a3a3(a+b)3+b3b3(a+b)3
=2(a+b)3
Hence proved.