If sinAsinB=√32 and cosAcosB=√52,0<A,B<π/2, then tanA+tanB is equal to
A
d√3√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
√5√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(√5+√3)√5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(√5+√3)√5 sinAsinB=√32⇒sin2Asin2B=34⇒sin2A=3sin2B4−(i)cosAcosB=√52cos2Acos2B=54⇒cos2A=5cos2B4−(ii)(i)+(ii)=1∴3sin2B4+5cos2B4=1∴3sin2B+5(1−sin2B)=4∴1=2sin2B⇒sinB=1√2B=45sinA=√62cosB=cos45=1√2cosAcosB=√52cosA=√2√52⇒tanA+tanB=sinAcosA+sinBcosB=√62√2√52+1√21√2=√3√5+1=√3+√5√5